Anomalous pressure evolution of the axial ratio c/a in hcp cobalt: Interplay between structure, magnetism, and lattice dynamics

Daniele Antonangeli,¹,a) Laura Robin Benedetti,¹ Daniel L. Farber,¹ Gerd Steinle–Neumann,2 Anne-line Auzende,3 James Badro,3 Michael Hanfland,4 and Michael Krisch4

¹Lawrence Livermore National Laboratory, Livermore, California 94550, USA
²Bayisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
³Institut de Minéralogie et de Physique des Milieux Condensés, Institut de Physique du Globe de Paris, 75005 Paris, France
⁴European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble Cedex, France

(Received 5 February 2008; accepted 14 February 2008; published online 19 March 2008)

We performed angle-dispersive x-ray diffraction measurements on hydrostatically compressed hcp cobalt to 90 GPa. Near 75 GPa, we document an inversion in the pressure derivative of the axial ratio c/a with no discontinuity in the volume and lattice parameters compression curves. These results are also reproduced by ab initio calculations. Our study indicates significant interactions among structure, magnetism and elasticity, suggesting that the collapse of the magnetic moment is responsible for the observed anomaly in c/a, as well as for the anomalies in the elastic and vibrational properties of hcp Co at high pressure. © 2008 American Institute of Physics.

[DOI: 10.1063/1.2897038]

The structure and elastic properties of 3d transition metals strongly depend on the d-electron occupancy and their magnetic state.¹ At ambient conditions, progressive filling of the 3d bands drives the stable elemental phase from bcc (iron), to hcp (cobalt), and finally fcc (nickel). Increasing pressure also stabilizes the hcp and then the fcc structure over the bcc structure. In both cases, suppression of the magnetic moment is considered the driving parameter. Indeed, compression typically leads to a broadening of the electronic bands and hence to a reduction of the density of states at the Fermi level, eventually driving the system to a nonmagnetic state.

Among all the elements or ordered compounds, cobalt exhibits a nonzero magnetic moment over the largest P-T domain. At ambient pressure Co is ferromagnetic, and its stable structure is hcp. At high temperature (695 K), Co undergoes a phase transition from the hcp to the fcc structure, retaining a magnetic moment up to 1400 K.² At ambient temperature the hcp phase is stable up to 100 GPa, where it transforms martensitically to a fcc phase in the 105–150 GPa range.³ In contrast to the high-temperature phase, the Co high-pressure fcc phase is suggested to be nonmagnetic.²–⁵

Well below the high-pressure hcp-fcc transition, the elastic and vibrational properties of cobalt display anomalous behavior:²–⁵ the aggregate sound velocities show a departure from the linear evolution with density, with a decrease in the E_{2g} mode Gruneisen parameter.⁶ While it is clear that there are strong elastic anomalies in the 70–80 GPa pressure range, quite surprisingly, there has been no indication of any structural discontinuity. Two independent experimental studies³,⁴ report a compression curve that is well described by a single third order Birch–Murnaghan equation of state (EOS), with bulk modulus K_0 and its pressure derivative K', equal to 199 ± 6 GPa and 3.6 ± 0.2, respectively. However, the cobalt sample was not hydrostatically compressed in either of the two experiments, and neither study was able to map with sufficient precision the pressure evolution of the axial c/a ratio.

Therefore, we have undertaken an x-ray powder diffraction study on pure hcp cobalt, nearly hydrostatically compressed in neon pressure medium. Our goal was to accurately document the pressure evolution of the c/a ratio and to highlight any possible effect linked to the anomalies in the elastic properties. We have complemented our experiments with all electron first principles computations, which closely track the c/a ratio with compression for both ferromagnetic and nonmagnetic hcp cobalts.

Experimentally, the presence of naturally occurring metastable fcc cobalt is a significant hindrance to accurate fitting of diffraction patterns.⁸ Based on our previous experience with uniaxially compressed polycrystalline cobalt,⁹ we have obtained pure hcp samples by compressing 99.999% purity cobalt powder to 5 GPa into a diamond anvil cell (DAC) with no pressure medium, and then quenching in liquid nitrogen. The recovered powder was then loaded, together with platinum powder and a ruby sphere as pressure calibrants, into rhenium gasket using neon as pressure transmitting medium. We employed two membrane type DACs, both equipped with beveled diamond anvils (150 μm flat beveled from 300 μm culet at 8°).

We performed angle-dispersive x-ray diffraction measurements at the ID09A beamline of the ESRF (Grenoble, France), using a monochromatic beam (λ=0.4121 Å) focused down to less than 15×15 μm² full width at half maximum. More than 50 diffraction patterns were collected at room temperature in the 0–90 GPa pressure range, throughout the entire stability field of the hcp phase. Particular care was taken to stabilize the pressure and to minimize the drift during the measurements. Pressure was measured by ruby luminescence¹⁰ before and after each collection of the Co diffraction, and confirmed by x-ray diffraction of the Pt in-

a)Electronic mail: antonangeli3@llnl.gov.
Figure 1 shows representative high-pressure diffraction patterns of cobalt. Our hcp-Co diffraction patterns have no evidence of contamination from the fcc phase, nor from the pressure markers or the gasket at any pressure. Analysis of the individual d spacings and pressure-induced broadening of the Co and Pt diffraction lines provides evidence of an overall good hydrostaticity over the entire investigated pressure range.

The compression curve is reported in Fig. 2, together with the weighted third-order Birch–Murnaghan fit to the experimental data, which yields $K_0 = 203 \pm 2$ GPa and $K'' = 3.6 \pm 0.1$, in good agreement with previous determinations. However, we observe a markedly different behavior in c/a from that of previous experimental work on foils and ab initio calculations. Our data display a monotonic decrease in the axial ratio with a minimum $\sim 70–75$ GPa. Above this pressure, c/a has a positive pressure dependence (Fig. 3). While a continuous decrease of the axial ratio with pressure was observed in previous diffraction experiments, the less dense sampling over a less extended pressure range, and the larger error bars, prevented a clear detection of the change in the slope.

Interestingly, the inversion in the pressure evolution of the axial ratio takes place in the same pressure interval where the anomalies in the elastic and vibrational properties have been observed. Discontinuities in the pressure evolution of c/a have been experimentally observed or theoretically predicted in other hcp metals, often associated with effects on the elastic properties. The link between these phenomenologies and Lifshitz transitions is a matter of extensive debate. YCo$_5$ also displays an abrupt change in the c/a at ~ 19 GPa, connected to a volume reduction of about 1.5%, arising from a lattice collapse along the c axis. Calculations of the magnetic moment and of the electronic density of states point to a magnetoelastic coupling as the origin of the volume collapse, and the anomaly has been described as a first-order Lifshitz transition.

In the case of hcp Co as well, a link between structure and magnetism, through a strong correlation of the axial ratio with the magnetic moment and magnetocrystalline anisotropy, is well established from both experimental and theoretical studies. However, despite the conceptual similarity, the present case is different in that there is no measurable volume collapse and the axial compression of both a and c is smooth and regular (Fig. 2).

To shed light on the origin of the axial ratio anomaly and on the potential link with the elastic and vibrational properties, we performed full-potential linearized augmented plane-wave calculations, implemented in the WIEN2K...
We thank C. Aracne and D. Ruddle for precious help in sample preparation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Collaboration between BGI and IMPMC was supported by the European Commission through the Marie Curie Research Training Network “c2c” under contract No. MRTN-CT-2006-035957.

12Mapping our data onto Dewaele’s correction to ruby-luminescence pressure (Ref. 11) shifts our highest pressures up slightly, yielding third-order Birch–Murnaghan EOS parameters $K_0=202 \pm 2$ GPa and $K_0’=3.9 \pm 0.1$.
27We compare 0 K calculations with experimental results obtained at 300 K. While a difference in the absolute equilibrium values of c/a is expected (and actually observed), changes in the pressure trend should be reflected correctly. Indeed, magnetism, and hence electronic structure, drive the change in c/a and, for electronic effects, the difference between 0 K and room temperature is not significant.