Heat can be transported in the mantle by conduction, radiation, or convection. Convection in the lower mantle is only initiated if the other two processes fail to transfer the heat flux produced from the secular cooling of the core and radioactive decay through the lower mantle, that is, if ratio of heat transport through convection to heat transport through conduction and radiation is high enough. Changes in the conduction or radiation properties of lower-mantle mineral assemblages will therefore strongly affect lower-mantle dynamics (1–8).

Earth’s lower mantle is mainly composed of (9) of iron-bearing magnesium silicate perovskite, (Mg_{2}Fe)SiO_{3}, which is the most abundant phase (about 80% by volume), and magnesiowüstite, (Mg,Fe)O. Iron in magnesiowüstite undergoes a high-spin (HS) to low-spin (LS) transition between 60 and 70 GPa (10). Such changes can have effects on various properties, such as iron partitioning and intrinsic characteristics of LS iron-bearing minerals. Since magnesiowüstite is an important phase in the lower mantle, we have been interested in exploring the HS-to-LS transitions in geophysical relevant minerals (11-13) of iron absorption bands (the absorption was not possible any more).

We measured the spin state of iron in magnesium silicate perovskite (Mg_{2}Fe)SiO_{3} at high pressure and found two electronic transitions occurring at 70 gigapascals and at 120 gigapascals, corresponding to partial and full electron pairing in iron, respectively. The proportion of iron in the spin state thus grows with depth, increasing the transparency of the mantle in the infrared region, with a maximum at pressures consistent with the D* layer above the core-mantle boundary. The resulting increase in radiative thermal conductivity suggests the existence of nonconvection layers in the lowermost mantle.
of HS iron is characterized by a main peak (Kβ_{1,3}) with an energy of 7058 eV and a satellite peak (Kβ') located at lower energy as a result of the interaction of the core hole with the spin-polarized 3d shell (15). Because the LS state of iron is characterized by a lower-spin magnetic moment than the HS state, the eventual pairing of the electrons as a consequence of pressure increase leads to an intensity decrease of the Kβ' peak (Figs. 1A and 2A), which is directly proportional to the relative abundance of the HS and LS species (Fig. 2A, right scale). Moreover, the energy shift of the Kβ_{1,3} line (by −0.75 eV) measured in perovskite between 20 and 145 GPa (Fig. 2B) is consistent with predicted values for a HS-to-LS transition (and also linearly scales to the relative abundance of the species); indeed, the transfer of spectral weight to the satellite region in the HS state compared to the LS state, where the satellite is largely reduced, is balanced by a displacement of the main peak in the opposite direction in order to keep the center of mass of the emission line fixed (19). The pressure dependence of the iron magnetic state derived from the data analysis (Fig. 2) shows the two successive transitions at around 70 and 120 GPa. The evolution of our spectra up to 100 GPa is at odds with claims of a gradual transition in a recent study (20) performed up to that pressure; our measurements show a nearly constant Kβ' peak intensity (Fig. 2A) and Kβ_{1,3} peak position (Fig. 2B) as well as a similar line shape (Fig. 1A) for all spectra in a given spin state (HS, mixed state, or LS). Therefore, iron in a HS state at low pressure undergoes a first transition at 70 GPa to a “mixed” state (where a fraction of the iron goes to the LS state, the rest remaining in the HS state); at 120 GPa, a second transition occurs transforming the remaining HS iron to the LS state; above this pressure, all iron in perovskite is in the LS state. Support for our interpretation of the two transitions comes from a direct comparison [i.e., without fitting (Fig. 1B)] with reference spectra of molecular spin crossover compounds (21) containing ferrous or ferric iron in the HS and LS states (15).

Iron in perovskite can be in the ferrous (Fe^{2+}) or ferric (Fe^{3+}) valence state and can occupy one of two crystallographic sites (22). Although the exact partitioning of ferrous and ferric iron between these two sites is poorly characterized, current interpretation (22) indicates that the large dodecahedral A site is the host of ferrous iron, whereas the smaller octahedral B site is the host of ferric iron together with lesser amounts of the ferrous species. In the conditions of synthesis and with 2 mole percent iron in our sample, perovskite contains about 75% Fe^{2+} and 25% Fe^{3+}, with 75% of the Fe^{2+} being in the A site and 25% in the B site and with all Fe^{3+} being in the B site (22). These values would lead to the following distribution of iron in perovskite: 56% ferrous dodecahedral, 25% ferric octahedral, 19% ferrous octahedral; i.e., 56% of total iron in the A site and 44% in the B site. The relative amounts of the HS and LS iron species in the mixed state are roughly 55% and 45%, respectively (Fig. 2, right scales), which indicates that the transitions could be site-specific; the first and second transitions could correspond to electron pairing in the A and B site, respectively. One should, however, not be deceived by this numerical coincidence; the technique used here is not highly sensitive to elemental proportions, and although the similarity of the figures could indicate it, we cannot at present ascribe the two transitions to the A and B sites.

Our sample was aluminum-free, which is known to increase the Fe^{3+}/Fe^{2+} ratio and to modify the compressibility (23–25) of perovskite. Similar experiments need to be performed on such systems in order to quantify the effect of aluminum on the spin transitions. Also, the effect of temperature will also need to be probed in order to transfer these laboratory observations to the real Earth system. If one assumes that the transition is density-driven (which spin transitions often are), the effect of temperature would consist in an increase of the transition pressure in order to counterbalance the thermal expansion term. The temperature correction could range from 15 GPa to 18 GPa between 70 and 120 GPa (15, 26) at 2500 K, which can be considered as an average value.

Fig. 1. (A) X-ray emission spectra collected on (Mg_{0.9}Fe_{0.1})SiO_{3} between 20 and 145 GPa. The spectra have been vertically shifted for clarity. The presence of a satellite structure (Kβ' line) on the low-energy side of the iron main emission (Kβ_{1,3} line) is characteristic of a HS 3d magnetic moment. The spin state of iron transforms twice at 70 and 120 GPa, as indicated by the changes in Kβ’ intensity. Moreover, the position of the Kβ_{1,3} line shifts with each transition (central position shown by the vertical dashed lines) and by a total of −0.75 eV between 20 and 145 GPa, which is in agreement with a HS-LS transition in iron. All spectra in a given spin state are similar in terms of both Kβ’ intensity and Kβ_{1,3} position. (B) The solid lines are models (15) constructed from reference molecular compounds and are not fitted to the data. Three spectra taken from three different states (HS at 20 GPa, mixed state at 100 GPa, and LS at 145 GPa) are plotted on top to show the agreement. All of the individual spectra are available in color online (15).
for the deep lower mantle geotherm (27). This correction can also be estimated with the Clapeyron slope of the transition, which yields comparable values (15).

It was recently reported that perovskite undergoes a crystallographic phase transition at D+ conditions, in full accord with our second transition pressure. One can conjecture that the last electronic transition reported here is linked to (or could even be a driving force for) the phase transition observed by Murakami et al. (28). Also, it was shown (10) that iron in magnesioiwustite undergoes a HS-LS transition at 70 GPa. Relying on theoretical studies that iron in perovskite remains in the HS state at geophysically relevant pressures, the study suggested on the basis of thermodynamic calculations that iron strongly partitions in the magnesioiwustite phase above this pressure. Here, we find that a similar yet incomplete transition occurs in the same pressure range in perovskite. This should reduce the magnitude of the partition coefficients previously proposed. With the two major lower-mantle minerals coexisting in various spin states, accurate theoretical modeling is needed to precisely quantify this issue; nevertheless, claims for a different thermochemical state of the lower mantle below 1700 km (10) are actually strengthened.

A HS-LS transition should increase the intrinsic radiative thermal conductivity of perovskite (11, 13). Indeed, radiative conductivity in HS iron-bearing lower-mantle minerals is hindered by light absorption in the near-IR spectral region because of intraband transitions (6–8, 29, 30). A HS-LS transition of iron in these minerals is accompanied by a blue shift of these absorption bands from the near-IR to the visible (blue-green) spectrum, as has been shown for octahedral Fe2+-bearing minerals (11), and is likely in the case of dodecahedral coordination (15). In turn, light with wavelengths in the red to near-IR spectral range should radiate through the assemblages with a longer mean absorption length. This spectral range corresponds to the maximum of blackbody emission for temperatures between 2000 K and 3000 K (970 nm at 3000 K), meaning that most of the radiative energy emitted from the core and lowermost mantle should be affected by the HS-LS transition (15). Our sample was heated with an IR laser at each pressure point in order to anneal the sample and to release stresses generated at such high pressures. Heating using the 1064-nm radiation of a Nd:YAG laser is achieved in metal-bearing silicates through the absorption by ligand field absorption bands (31); that energy is then converted to heat, and the technique has been used to reach temperatures in excess of 5000 K in the diamond anvil cell (31). However, above 120 GPa, when all the iron in perovskite transformed to the LS state, it was not possible to heat the sample with the radiation of the Nd:YAG laser (1064 nm) any more, and only the focused laser spot could be observed on the sample with a charge-coupled device (CCD) camera imaging system (32), as opposed to a bright heating spot when the laser couples at lower pressure. This provides an additional indication that, above 120 GPa, absorption by perovskite in the IR is hindered. Because this observation was made only after the second transition, we suggest that it has the most radical effect on radiative heat transfer in perovskite.

The pressure range of the first transition (70 GPa) is consistent with the depth (1700 km) at which lower mantle chemical heterogeneities have been proposed (33) as well as with the transition pressure for iron in magnesioiwustite (10), the other main iron-bearing mineral of the lower mantle. The second transition pressure (120 GPa, corresponding to a depth of 2600 km), at which the HS-LS transition is completed in perovskite, is consistent with that of the D+ layer; at higher pressure (or below this depth), all lower-mantle minerals consist of LS iron. An important characteristic of this assemblage would be an increased radiative conductivity. The transitions should have a strong dynamical signature as inferred from geodynamical modeling (2, 4–5), because an increase in thermal conductivity will result in a decrease of the Rayleigh number and hence may hinder convection and favor layering.

Recently, a thermal conductivity model of the mantle was derived from an extrapolation of spectroscopic data obtained at room pressure and temperature (3–4). Such models are not yet able to take into account the radical effects that spin-pairing transitions can have on the radiative term of thermal conductivity. Recent convection models (4–5) account for radiative conductivity on the basis of this model; if modified, it would allow to gauge the effects of the spin-pairing transitions on lower-mantle dynamics.

References and Notes

Structure and Flexibility Adaptation in Nonspecific and Specific Protein-DNA Complexes

Charalampos G. Kalodimos, Nikolaos Biris, Alexandre M. J. J. Bonvin, Marc M. Levandoski, Marc Guennuegues, Rolf Boelens, Robert Kaptein

Interaction of regulatory DNA binding proteins with their target sites is usually preceded by binding to nonspecific DNA. This speeds up the search for the target site by several orders of magnitude. We report the solution structure and dynamics of the complex of a dimeric lac repressor DNA binding domain with nonspecific DNA. The same set of residues can switch roles from a purely electrostatic interaction with the DNA backbone in the nonspecific complex to a highly specific binding mode with the base pairs of the cognate operator sequence. The protein-DNA interface of the nonspecific complex is flexible on biologically relevant time scales that may assist in the rapid and efficient finding of the target site.

Protein-nucleic acid interactions are responsible for the regulation of key biological functions such as transcription, translation, replication, and recombination. Understanding the mechanisms by which regulatory proteins discern their target sequences within the DNA genome requires that we also understand the properties of their complexes with nonspecific DNA (1). Nonspecific sites participate in the regulation of the physiological function because they complex, in vivo, most of the DNA binding protein molecules that are not bound at their regulatory functional sites (2). Furthermore, protein–nonspecific DNA interactions may also play an important role in the in vivo translocation of DNA binding proteins (3, 4). Indeed, it has been demonstrated that proteins can find their DNA target sites at rates that are much faster than diffusion-controlled by initially binding to DNA anywhere along the chain and then translocating to their specific sites by a combination of intramolecular processes, including one-dimensional (1D) diffusion along the DNA (5–7). Most, if not all, proteins that interact with specific sites bind also nonspecifically to DNA with appreciable affinity. Thus, nonspecific interaction is an important intermediate step in the process of sequence-specific recognition and binding (8). Description of the structural and dynamic response of protein binding to both nonspecific and cognate operator sequences is a prerequisite for elucidating the physicochemical mechanisms that underlie the protein-DNA recognition process.

Many studies have revealed that sequence-specific binding is coupled to extensive conformational changes in both protein and DNA components (9, 10). How does protein binding to nonspecific DNA, which precedes the specific binding, alter the structural and dynamic features of the partners? How does the complex switch from the nonspecific to the specific mode during the exploration process? These questions remain unanswered, mainly because of the scarcity of data on nonspecific binding. To address these central issues, we have structurally and dynamically characterized the DNA binding domain (DBD) of the lactose repressor in the free state and bound to a nonspecific DNA sequence and to its natural operator. Lac repressor, which is a prototype of transcription regulation, binds with a dimeric DNA binding unit to its cognate operator sequences 102 to 103 times faster than the rate estimated for a 3D diffusion-controlled reaction, with very high specificity (11). We previously reported the structure of the dimeric lac DBD free in solution and bound to its natural operator O1 (12, 13). Here, we report the high-resolution structure of the dimeric lac DBD bound to an 18-base-pair nonspecific DNA fragment (NOD). The variation of flexibility and the redistribution of the native-state ensemble along the recognition pathway were probed by relaxation and hydrogen-deuterium (H-D) exchange methodologies. The new findings also provide a molecular basis for explaining the thermodynamics of specific compared with nonspecific binding.

A dimeric lac headpiece-62 (HP62) mutant (12, 14), which binds DNA with an affinity similar to that of the intact lac repressor, formed a stable and unique complex with an 18-base-pair-long nonspecific fragment (fig. S1) (15). The structure was determined on the basis of 2412 experimental restraints derived from multidimensional nuclear magnetic resonance (NMR) spectroscopy [Supporting Online Material (SOM) Text and table S1]. The ensemble of the 20 lowest-energy conformers is depicted in Fig. 1A.

Remarkably, the protein tilts by ~25°, relative to the DNA (Fig. 2A), compared to the specific complex, resulting in a dramatic alteration of the protein-DNA contacts (Fig. 2C). The side chains of Tyr7, Tyr17, Gln18, and Arg22, the primary residues that confer specificity to lac repressor through direct interactions with the base pairs in the major groove of the cognate operator (Fig. 2C) (13), shift and twist so as to participate in hydrogen bonds or electrostatic interactions with the phosphates (Figs. 1B and 2B). Consequently, a cavity is formed in the protein-DNA interface that can accommodate water molecules. In some of the structural conformers, these residues interact with the major groove through water bridges (SOM Text and fig. S3). A direct intermolecular hydrogen bond between the side chain of Tyr17 and the O2P phosphate atom of Thy8 is present in all conformers. We tested the observed interaction of the Tyr17 hydroxyl group with the phosphate backbone by examining the DNA binding of a mutant repressor in which Tyr17 was mutated to Phe (Y17F) in the context of full-length lac repressor (SOM Text). For binding to the specific operator, removal of the Tyr17 OH