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Figure §2: Core composition for
ternary  oxygen-silicon  (green),
oxygen-sulfur (blue), and oxygen-
carbon (red) that satisfy PREM
s within 1o, for various CMB
temperatures  (labeled on the
\ curves). The data used in the main

\ \ text corresponds to Tcyp=4300 K

‘ ; (above).
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6. Effect of Geotherms: adiabatic vs. sub-adiabatic

In our model, we always assumed that the temperature gradient across the outer core was
isentropic, and fell on the isentrope of pure iron, as calculated (see section 2 above) self-
consistently by our first principles molecular dynamics. This assumes two things: (1) we
consider that the outer core is actually adiabatic, and (2) we assume that the adiabat does not
change with light elements. Both of these assumptions need to be tested in order to prove the
robustness of our compositional model, and both of them result is a sub-adiabatic (less steep)
thermal gradient. Firstly, adding light elements should lower the melting temperature with
respect to that of pure iron, and therefore that at the ICB resulting in a sub-adiabatic gradient
when compared with pure iron. Secondly, the convective outer core could be sub-adiabatic
because of solutal convection, and this once again results in a lower temperature at the ICB.
So we decided to quantify the effect of 3 different geotherms across the outer core on our
composition: pure Fe adiabat, a 300 K sub-adiabatic profile, and a 600 K sub-adiabatic
profile.

We kept the temperature at the CMB constant at 4300 K, and used three ICB temperatures of
6300 K (pure Fe adiabat), 6000 K, and 5700 K. The resulting core compositions are in figure
S3. Once again, we not small quantitative changes, but qualitatively, as with the change in
core temperature, the slope of the core’s geotherm makes for minor changes, and our
conclusions are unaffected.
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Figure S3: Core composition in ternary oxygen-silicon (green curves), oxygen-sulfur
(blue curves), and oxygen-carbon (red curves) that satisfy PREM within 1-o error, for
various geotherms. The temperature at the CMB is fixed (Tcyp=4300 K) and we have
chosen 3 plausible temperatures at the ICB: T;cp=6300 K (pure Fe adiabat), as well as
Ticp=6000 K and T;cp=5700 K corresponding to 300 and 600 K depressions of the

adiabat due to light element content and/or solutal convection.
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