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We performed laser-heated diamond anvil cell experiments com-
bined with state-of-the-art electron microanalysis (focused ion
beam and aberration-corrected transmission electron microscopy)
to study the distribution and valence of iron in Earth’s lower man-
tle as a function of depth and composition. Our data reconcile the
apparently discrepant existing dataset, by clarifying the effects of
spin (high/low) and valence (ferrous/ferric) states on iron parti-
tioning in the deep mantle. In aluminum-bearing compositions
relevant to Earth’s mantle, iron concentration in silicates drops
above 70 GPa before increasing up to 110 GPa with a minimum
at 85 GPa; it then dramatically drops in the postperovskite stability
field above 116 GPa. This compositional variation should strengthen
the lowermost mantle between 1,800 km depth and 2,000 km depth,
and weaken it between 2,000 km depth and the D” layer. The
succession of layers could dynamically decouple the mantle above
2,000 km from the lowermost mantle, and provide a rheological
basis for the stabilization and nonentrainment of large low-shear-
velocity provinces below that depth.
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he relative concentration (partitioning) of iron in minerals

constituting mantle rocks is a critical parameter controlling
their physical properties and, consequently, the dynamical prop-
erties of the mantle. In a pyrolitic mantle, the lower-mantle mineral
phase assemblage consists of bridgmanite (Brg)—which transforms
to postperovskite (PPv) at pressures higher than 110 GPa (1-4)—
ferropericlase (Fp), and calcium silicate perovskite. Only Brg/PPv
(hereafter referred to as “silicate” and abbreviated Sil) and Fp can
accommodate significant amounts of iron in their structure (5).
Density, elasticity, viscosity, and thermal or electrical conductivities,
along with associated phase relations, melting temperatures, and
relative melt/solid buoyancy, are all linked to the concentration,
valence, and spin state of iron in lower-mantle minerals. The
seismic observation of global-scale heterogeneities such as large
low-shear-velocity provinces (LLSVPs) (6, 7), and that of ex-
perimental iron spin-pairing in mantle minerals at lower-mantle
depths (8, 9), has fueled a number of investigations of iron
partitioning in the lower mantle (10-22).

Despite remarkable advances in experimental and analytical
techniques in the last two decades (Supporting Information),
stark discrepancies have been reported, depending on the com-
position of the startlng material (San Carlos olivine vs. pyrolite)
and differences in iron valence (Fe** and Fe*"). San Carlos
011v1ne has a molar (Mg + Fe)/Si = 2 and contains only iron as
Fe?*, whereas pyrolite has a molar Mg + Fe)/Si = 1.4, contains
Ca and Al, and contains iron as Fe** and Fe** (23). Therefore,
the parameters controlling iron partitioning in deep mantle con-
ditions are complex (12), and hinder any attempts to infer large-
scale geophysical or geochemical consequences on the mantle.

To disentangle valence (15, 23), spin (18, 24), and compositional
(12) effects on iron partitioning, we measured iron concentration
and iron valence (Fe*" and Fe** concentrations) in silicates and
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Fp at lower-mantle conditions, in two bulk compositions in-
termediate between the widely studied San Carlos olivine (10, 11,
17-19, 24, 25) and pyrolite (16, 21, 22) compositions. These are (i)
an alumina-bearing olivine and (if) a calcium-free pyrolite. Neither
composition exists in nature, and they were therefore synthesized
in the laboratory to be used as compositionally intermediate
compounds: Al-bearing olivine is a San Carlos olivine (Mg#90)
with the addition of 2 wt.% Al,Os, and has an iron valence
distribution similar to that of pyrolite. Ca-free pyrolite has the
same iron valence as pyrolite, but contains no Ca, eliminating
CaPv from the phase assemblage; as CaPv contains negligible Fe,
it is not relevant to Fe partitioning at lower-mantle conditions.

Materials and Methods

Al-bearing olivine and Ca-free pyrolite glasses were produced in an aero-
dynamic levitation laser furnace, compressed in symmetrical diamond anvil
cells at pressures between 28 GPa and 118 GPa, and laser-heated from both
sides to temperatures between 2,100 K and 2,700 K, sticking as close as
possible to a mantle geotherm (26) (Table S1). The samples were heated for
10 min to 20 min to ensure full equilibration of the sample and to grow
large enough crystal grains for accurate chemical quantification (Fig. 1A and
Supporting Information). The samples were then quenched and decom-
pressed, and thin sections suitable for transmission electron microscopy (TEM)
analysis were prepared using the focused ion beam (FIB) lift-out tech-
nique (Fig. S1) using Zeiss Nvision 40 [Centre Interdisciplinaire de Microscopie
Electronique (CIME), Ecole Polytechnique Fédérale de Lausanne (EPFL)] and
Zeiss Auriga [Institut de Physique du Globe de Paris (IPGP)] instruments.
Quantitative chemical maps and analyses were obtained in scanning TEM
(STEM) mode (Fig. 1 B—D and Supporting Information) using energy dispersive
X-ray (EDX) spectroscopy (Fig. S2) performed on an FEI Tecnai Osiris TEM
(CIME, EPFL). Iron valence state (Fe* and Fe3* distribution) (Fig. $3) was
measured on aberration-corrected electron microscopes, with high spatial
resolution and high analytical sensitivity, by electron energy loss spectros-
copy (EELS) on a JEOL ARM 200 instrument [LeRoy Eyring Center for Solid
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Fig. 1. TEM image and EDX chemical maps of a Brg and Fp assemblage
heated for 15 min at 58 GPa and 2,400 K. Bright-field TEM image (A) of the
assemblage and corresponding chemical maps for (B) iron, (C) silicon, and (D)
magnesium. The geometry of Fp grains, as well as the identical composition
of distinct grains across the sample, is indicative of equilibrium conditions.
The central part of the sample shows smaller overlapping Fp and Brg grains;
those were never used for quantification.

State Science, Arizona State University (ASU)] using a Gatan Enfinium
spectrometer, and on an FEI Titan Themis instrument (CIME, EPFL) using a
Gatan GIF Quantum ERS high energy-resolution spectrometer. Quantitative
chemical analyses of silicates and Fp phases are reported in Table S1 for all
runs, and more details about sample preparation, synthesis, recovery, and
analysis can be found in Supporting Information.

Results and Discussion

The EELS measurements confirm that Fp, like olivine at lower-
pressure conditions, does not accommodate ferric iron (Table
S1), and contains only Fe?* up to 118 GPa, as observed at lower
pressures (15). The silicate, however, contains both Fe** and
Fe’", consistent with prewous observations (23, 27), albeit with
s1gn1f1cantly lower Fe*/SFe above 116 GPa (PPv stablhty field)
than at lower pressure (Brg stability field). Ferric iron is there-
fore entirely contained in the silicate phase and doesn’t exchange
or partition between the silicate and Fp, whereas ferrous iron is
distributed between both silicate and Fp through an Fe-Mg ex-
change reaction,
(Fe*)gy + (Mg2+)Fp < (Mg*)g + (Fe2+)Fp'
This reaction describes Fe?* partltlonmg between both phases
and its exchange constant Kp, is defined as Kp = (X5, X, ‘;H )/

(X]ljfz+ X I\S/;‘“) where X is the (molar) concentration of Mg and

Fe?" in Fp and the silicate. The effective equilibrium constant
K.y describes total iron (Fe** + Fe") partitioning between the
two phases, Koy = (X321 XI\FAZ) J(XEP Xity)» Where X is now the
(molar) concentration of Mg and total Fe in Fp and the silicate.
High values of K, therefore indicate iron-rich silicates, whereas
low values indicate iron-rich Fp.

The compositional effect on K is apparent in Fig. 24, where
our data are combined with laser-heated diamond anvil cell
(LHDAC) data from the literature obtained with other bulk
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chemistries (i.e., San Carlos olivine in blue, and pyrolite in or-
ange). Our measurements in both Al-bearing olivine and Ca-free
pyrolite are fully consistent with the previously published pyrolite
dataset (16, 21, 22), corroborating the fact that iron partitioning is
mainly controlled by aluminum content, and does not depend on
the relative iron, magnesium, silicon, or calcium concentrations in
the rock. Below 70 GPa, where partitioning is constant with pres-
sure, K. in the Al-bearing system is signiﬁcantly larger than in the
Al-free system; this relative enrichment of iron in the Brg is the
result of the coupled substitution Fe** + Si*" = Fe®* + AP (Fig. $4),
stabilizing Fe>* in that phase (28, 29).

The pressure effects on K, 4 are more complex. At pressures up
to 70 GPa, K. is effectively constant (Fig. 24) in both types (Al-
free and Al-bearing) of systems. The invariance of K, demon-
strates that iron partitioning between lower-mantle minerals is
constant with depth down to about 1,700 km depth, regardless of
Al content and iron valence distribution, and is consistent with
the absence of strong geophysical signature in the lower mantle
to those depths (6, 30); 70 GPa corresponds to the onset of iron
spin-pairing in Fp (8, 31), where iron enrichment was predicted
(32, 33) in this phase. This enrichment is observed in both sys-
tems (Fig. 24) through the decrease of K.+ above 70 GPa, with a
notable difference, however: The Al-free system shows a gradual
and constant decrease in K. (in this case equal to Kp) with
pressure up to 100 GPa, whereas the Al-bearing system shows a
peculiar behavior, in which K4 decreases to a minimum value at
85 GPa and then increases up to 110 GPa.

In the PPv (3, 4) stability field, a sharp decrease in K. is
observed in the Al-bearing system whereas a sharp increase is
observed in the Al-free system_ It is noteworthy, however, that
K., then becomes identical (within uncertainties) in both Al-free
and Al-bearing systems. This particularity is preserved at higher
pressures in the PPv stability field, and both systems exhibit
similar partitioning with K, decreasing with pressure; this is the
only pressure range, corresponding to the lowermost mantle,
where iron partitioning in both Al-free and Al-bearing systems is
identical.

The comprehensive dataset clearly distinguishes two types of
behavior: Al-free ferrous-iron-bearing systems (San Carlos oliv-
ine starting compositions, blue colors in Fig. 24) and Al-bearing
systems, containing both ferrous and ferric species (pyrolite, Ca-
free pyrolite, and Al-bearing olivine, orange colors in Fig. 24).
This resolves the long-standing discrepancy in iron partitioning
behavior previously reported in the literature, as being due to the
inappropriate comparison of experimental data from Al-bearing
and Al-free lithologies. Our data also confirm that iron parti-
tioning in the Al-bearing system is more complicated than that
in the Al-free system. The mechanism is explained by changes
in iron valence in the silicate at high pressure coupled with
changes in spin state. Iron depletion in the s111cate (Brg or PPv)
is systematically associated with a drop in Fe** concentration
(Fig. 2B) and conversely; the evolution trends of K (Fig. 24)
and Fe** concentratlon in the silicate (Flg 2B) are identical. A
drop in Fe** implies an increase in Fe** concentration, and the
latter has a strong affinity for Fp as shown by the partitioning
behavior in the Al-free system, especially above 70 GPa when it
turns to the low-spin state. Therefore, 1ron depletion from the
silicate is expected with decreasing Fe** and increasing Fe
concentration, due to the preferentlal partitioning of Fe**

Fp; that partitioning is spin-state-dependent, and becomes
more extreme at pressures above 70 GPa, where iron becomes
low-spin in Fp.

The combined dataset presented here also shows that iron
partitioning in all Al-bearing systems (pyrolite, Ca-free pyrolite,
Al-bearing olivine) is identical within uncertainties, regardless of
bulk composition, and argues that our results are applicable to
Earth’s mantle. With the silicate phase being the dominant
interconnected phase in the lower mantle, it should strongly
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Fe—Mg exchange coefficient between silicate (BRG and PPV) and Fp at lower-mantle pressures and temperatures. Brg and PPv stability fields are

separated by the vertical dashed line at ~115 GPa. (A) Effective exchange coefficients K4 obtained from EDX analyses (yellow and purple filled circles) are
plotted as a function of pressure. Kes values from previous studies in the San Carlos olivine system (11, 17-19, 24, 25) and in the pyrolite system (16, 21, 22)
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influence transport properties (34-36) and, most notably, vis-
cosity (37). Although there are no compositional-dependence de-
formation data on Brg, experiments on olivine (38) and Fp (39) have
shown an inverse correlation between iron content and strength:
Minerals with higher iron concentrations are softer. Assuming that
the strength of Brg/PPv follows a similar compositional dependence,
an increase in K should result in decreased strength. Because Brg/
PPv is the major interconnected phase in the lower mantle, this
should result in lowering mantle viscosities (9).

We found a striking correlation (Fig. S5) between mantle
viscosity profiles obtained by geophysical inversion (40) and iron
partitioning (K.); a viscosity maximum observed at 2,000 km
depth corresponds to a minimum in both K. and Fe**/sFe
observed at 85 GPa (Fig. 2), whereas the viscosity minimum at
2,550 km depth fits with a maximum in both K, and Fe*/SFe at
100 GPa (Fig. 2). The lack of sensitivity at those depths, however,
precludes the accurate inference of viscosity from geophysical data
(41, 42). Moreover, without composition-dependent deformation
experiments or calculations on Brg, the question remains open from
the point of view of mineral physics.

It has been proposed that the viscosity high at 1,000 km (40,
42, 43) is correlated with stagnating slabs and fast regions
inferred from seismic tomography (44). If the viscosity contrast
between 80 GPa and 120 GPa predicted here were to affect
mantle dynamics below 1,800 km, this would provide a unique

1. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase
transition in MgSiOs. Science 304(5672):855-858.

2. Hirose K, Sinmyo R, Sata N, Ohishi Y (2006) Determination of post-perovskite phase
transition boundary in MgSiO3 using Au and MgO pressure standards. Geophys Res
Lett 33(1):L01310.
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explanation to the remnance of LLSVPs. These structures are
currently thought of as being primordial (7), dating back to the
initial settling and freezing of Earth’s Magma Ocean after ac-
cretion 4.5 Gy ago. The question of their stability (45), and how
they anchor above the core—mantle boundary over geologic
time, is still unsolved. The top of the weak layer inferred by our
partitioning data sits above those structures. We propose that a
weak lowermost mantle (below 2,000 km) topped by a stiffer
mantle (1,800 km to 2,000 km) could dynamically decouple the
base of the mantle from the overlying mantle, which could, in
turn, isolate and stabilize these large structures.
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S| Materials and Methods

Starting Material Preparation. High-purity powders of MgO, FeO,
and SiO, were finely ground and mixed together under ethanol
to produce a natural San Carlos olivine composition (9.6 wt.%
FeO). High-purity alumina powder was added to the mix to
obtain a total Al,O3 concentration of 2.0 wt.% (Table S1). The
powders were dried and pressed into pellets, and then fused at
2,100 °C for 60 s in an aerodynamic levitation laser furnace (46)
using argon carrier gas. Temperature was quenched at 1,000 K/s
to obtain a glass. A chip from each sample was then imaged with
back-scattered electrons using a field-emission scanning electron
microscope. The sample was homogeneous and contained no
grains at any scale; further EDX analyses of the starting material
were performed, and they revealed no chemical heterogeneities
in the sample for all elements.

High-Pressure and High-Temperature Synthesis. Chips of the glassy
starting material were pressurized in symmetrical diamond anvil
cells, in a laser-drilled rhenium gasket (30 pm to 45 pm thick, 70-
to 150-pm diameter hole). Flat 300-um, 200-pm, and beveled
300/150-pm diamond culets were used. Pressure was measured
from the Raman shift of previously calibrated diamond anvils
(47). The samples were then laser-heated from both sides using a
200-W infrared fiber laser, to temperatures between 2,100 K and
2,450 K, sticking as close as possible to a mantle geotherm (26)
(Table S1). Temperatures were measured by spectroradiometry
(48). The samples were heated for 10 min to 20 min to ensure
full equilibration of the sample and to grow large enough crystal
grains for accurate chemical quantification. After laser heating,
the samples were instantly quenched by switching off laser
power. The samples were then decompressed and prepared for
subsequent microanalysis.

Temperature gradients in the LHDAC can induce chemical
(Soret) diffusion, which, in our case, is most critical for the case of
iron toward the edges of the heated zone (i.e., outside the ana-
lyzed zone in the heated sample). However, we observe no sig-
nificant variations in iron content of minerals analyzed in
different parts of the heated zone, which precludes significant
temperature gradients during the synthesis. We also report an
average of less than 10% loss of iron in the center of the sample
compared with the initial iron content in the starting material.
Such iron losses are quite fair according to previous studies, where
40% could be lost toward the edges of the heated spot. More
importantly, for each sample, K. was measured across the
heated spot and showed no variation. Partitioning can be highly
temperature-dependent, and what those measurements show is
either that iron partitioning has a weak temperature dependence
or that temperature variations across the parts of the sample
where the measurements were performed are relatively limited.

Sample Preparation for TEM Analyses: The FIB Technique. Thin sec-
tions suitable for TEM analysis were prepared using the FIB lift-
out technique (Fig. S1). We used Zeiss Nvision 40 (CIME,
EPFL) and Zeiss Auriga (IPGP) instruments. We first deposited
a 1.5-pm-thick carbon or platinum layer on top of the sample, in
the zone corresponding to the center of the laser-heated area
(Fig. S1 A and B). This layer prevents the sample from ion beam
damage during excavation. The sample was excavated around
the carbon deposit (Fig. S1C) using a focused gallium ion (Ga®)
beam operated at 30 kV and different currents in the 1- to 27-nA
range. A (15 x 20 x 2)-um section was then extracted with a
micromanipulator and transferred to an omniprobe TEM copper

Piet et al. www.pnas.org/cgi/content/short/1605290113

grid for further thinning (Fig. S1D). We then switched to a lower
range of currents (80 pA to 700 pA) for thinning the sample
down to electron transparency. TEM analyses require a thickness
of the sample between 50 nm and 100 nm. Given the uncertainty
in thickness measurements while in ion imaging, we thinned the
sample until we reached electron transparency in SEM imaging
with the electron beam operated at 4 kV; this was enough to
provide good quantitative analyses for the two quantitative tech-
niques used and described hereafter (TEM-EDX and EELS).
Final polishing of the thinned area was performed operating the
ion beam voltage of 5 kV with a current of 30 pA to remove the
deposition from the milling process.

Chemical Analyses by EDX Spectroscopy. Chemical analyses were
obtained by EDX spectroscopy and performed using Analytical
TEM on an FEI Tecnai Osiris (CIME, EPFL) operated at 200 kV
to image the sample in Bright-Field (Fig. 14) as well as High
Angle Annular Dark Field modes. Typical EDX spectra are
shown in Fig. S2. Chemical maps were acquired in STEM mode
for 500 s to 1,000 s to minimize analytical uncertainties (Fig. 1
B-D). Quantitative measurements were then performed on indi-
vidual grains by deconvolution of selected areas, after Brems-
strahlung background subtraction, using Fe, Mg, Si, O, and Al K
alpha lines. A TEM thin section from the starting glass material
was also prepared by FIB technique to provide the precise
composition of the starting material, using the same quantifica-
tion protocol as the high-pressure samples (Table S1).

Characterization of Iron Valence State by EELS. The ARM200 was
operated in TEM mode at an accelerating voltage of 120 kV. To
avoid electron beam-induced sample damage, particularly
changes in the oxidation state of Fe, we expanded the electron
beam (up to ~200 nm in diameter, but smaller than the size of
individual grains). With similar concerns regarding sample
damage, the Titan showed optimal performance when operated
at 300 kV using the dual-channel STEM-EELS acquisition for
near-simultaneous low-loss and core-loss acquisition with a dis-
persion of 0.05 eV/channel. We chose a 2.5-mm entrance aperture
for the spectrometer and a camera length of 29.5 mm, resulting in a
collection angle of 19.8 mrad. On both microscopes, spectra were
acquired for 10 s to 30 s, preventing beam damage of the silicate
matrix and ensuring a good signal-to-noise ratio, enough for de-
convolution of spectral features from acquired spectra.

The energy resolution was <1 eV, estimated from the full width at
half maximum of the zero-loss peak. The fraction of ferric iron was
determined by the EELS analysis methods in van Aken (49). In the
analysis, we used the EEL spectra of olivine and pyroxene as a
ferrous iron standard and the EEL spectrum of andradite as a ferric
iron standard, all of which are measured using the instrument in the
same analytical conditions as when measuring the samples. We
subtracted the background following the method described in van
Aken (49). A channel-to-channel gain variation and dark current
correction were done for all EEL spectra. The spectra were then
fitted by minimizing (least squares) the residual of the linear com-
bination of ferrous and ferric iron standard spectra (Fig. S3).

SI Results and Discussion

TEM imaging and EDX mapping (Fig. 1) reveal that mineral
assemblages are mainly composed of Fp grains embedded in an
amorphous Brg matrix, in equal proportions as it is usually ob-
served for samples equilibrated from olivine (18, 24). Fp grain size
ranges between 50 nm and 400 nm, with a texture characteristic of
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full chemical equilibration and growth (15, 18). We observe no
significant chemical heterogeneities among minerals investigated
in different areas of the samples. These observations preclude any
substantial chemical diffusion (Soret) during laser heating that
could have biased the chemical analyses. Fp grains used for quan-
tification are essentially Si-free (Fig. 1C), ensuring no contamination
from overlap with Brg in chemical analysis (Table S1).

Iron partitioning at lower-mantle conditions has been thor-
oughly investigated in the simple San Carlos olivine (10, 11, 17—
19, 24, 25) and the complex pyrolite (16, 21, 22) systems. Besides
the clear discrepancy in iron partitioning between these two
systems (Fig. 2), discrepancies are also reported among data sets
treating identical bulk compositions. In Fig. 2, we show only the
experimental values of K. that were not affected by experi-
mental artifacts, and are thus consistent with pressure (P) and
temperature (T) conditions along the lower-mantle geotherm. We
discuss the robustness of these data in SI Results, Iron Partitioning
Data and refer to measured data as K. values. In the following
sections, we discuss observed changes in Fe>* content of the sili-
cate with increasing pressure (SI Results, Iron Valence State in
BRG) and the effect on mantle rheology (SI Results, Viscosity in
the Lower Mantle).

Iron Partitioning Data from the Literature.

The San Carlos olivine system. Two studies (18, 24) report an increase
of iron content in Fp from 70 GPa to 100 GPa, which they as-
sociate with the spin transition of ferrous iron from high-spin to
low-spin state (8, 32). A volume collapse of iron following the spin
transition indeed favors the incorporation of low-spin species into
Mg sites, resulting in an increased affinity of iron for Fp (Fig. 2).
However, other studies on iron partitioning in the San Carlos
olivine system do not report this effect (17, 19).

Kobayashi et al. (17) report values of K.y (below 0.2) in the Brg
stability field systematically lower than all other studies; this
could be due to the choice of low equilibration temperatures,
several hundred Kelvin below the other studies (and far from a
plausible mantle geotherm). For this reason, their data were
discarded from our subsequent analysis. Sinmyo et al. (19) report
strong heterogeneities in Fp compositions caused by extensive
iron diffusion (Soret) toward the edges of the heated zone where
temperatures are highest. Such nonequilibrium conditions pre-
clude the use of such data for a proper thermodynamic quanti-
fication, as suggested by the authors. Hence, the data from that
study were also discarded from subsequent analysis. Iron diffu-
sion during laser heating is almost inevitable, but our samples
only show minor iron depletion (less than 10% total iron loss).

Sakai et al. (25) report two significantly different values of K
measured in the same sample at 140 GPa. The sample experi-
enced iron depletion in one part (K,r = 0.44 + 0.13) and iron
enrichment in another part (K = 0.04 + 0.01), producing
markedly different values due to accordingly different Fp com-
positions. Hence, that point was discarded from the dataset.

Auzende et al. (18) also measure an anomalously high K4
value (0.66 + 0.05) at 115 GPa compared with other data from
the literature (K. below 0.5). They estimate the silicate to be
PPv, despite the absence of XRD analysis. However, all sub-
sequent measurements on the PPv phase showed markedly lower
partitioning values. Hence, that anomalous point was discarded
from the author’s dataset.

The pyrolite system. The high value of K4 (0.90 + 0.14) at 114 GPa
from Sinmyo and Hirose (21) is intriguing. In the study of Sinmyo
et al. (50), that same sample was characterized as Brg, and
pressure was estimated at 93 GPa (20 GPa lower), a difference
which easily spans the Brg/PPv transition. Moreover, the K¢
value of ~1.12 in 2011 was recalculated at 0.90 in 2013. Such un-
certainties on the conditions of synthesis preclude any use of that
point in the global model. For the same reasons, the value of Sin-
myo et al. (50) for PPv at 135 GPa (K, = 0.22) was also scrapped.

Piet et al. www.pnas.org/cgi/content/short/1605290113

Prescher et al. (22) report a silicate phase as Brg although very
clearly in the PPv stability field (130 GPa, 2,500 K), probably
indicating metastable conditions during synthesis. The data point
was also discarded. Our data above 110 GPa lack in situ char-
acterization of the silicate structure (Brg vs. PPv). However, our
measured K4 values are identical to those observed by Sinmyo
et al. (19), Sakai et al. (25), Kobayashi et al. (17), and Murakami
et al. (16) where the silicate is confirmed as PPv by X-ray dif-
fraction (XRD). Low ferric iron contents in PPv (25% ferric iron
vs. 40% on average in Brg) are another argument supporting the
PPv structure in our silicates at the highest pressures.

Iron Valence State in Brg. Charge neutrality of a crystallographic
structure rules the possible cation substitutions in cation sites. In
Brg, Fe?*, for example, simply exchanges with Mg** in do-
decahedral sites. On the other hand, the stabilization of Fe>* in
the structure is less straightforward, and aluminum is found to play
a key role (15, 23). Among all possible substitution mechanisms
investigated by Richmond and Brodholdt (28), the 1:1 coupled
substitution of Fe** and AI**, respectively, in the dodecahedral
Mg site and the octahedral Si site is the mechanism that requires
the minimal amount of energy and hence the most favorable,

Fe?\tsite + Si4BTsile - Fe?\tsite + Al?];site' [SI]
A-site and B-site stands, respectively, for the dodecahedral Mg
site and the octahedral Si site.

In Al-free systems or if Al content is too low to satisfy the conditions
of Eq. S1, the incorporation of Fe** similarly involves the substitution
of two Fe** in both the dodecahedral and the octahedral sites,

Fedl e + Sigy

-site

3+ 3+
site - FeA-sitc + FeB-sitc’ [52]
charge balancing the electronic structure of the mineral. In the
case where AI** is in excess over Fe**, the incorporation of
AP follows the same mechanism,

+ AL [S3]

2+ 4+ 3+
MgA-site + SlB-site - AlA- B-site?

site
entering adjacent dodecahedral and octahedral sites. These
mechanisms do not involve the creation of oxygen vacancies.

At pressures below 75 GPa, Al/Fe®* ratios in the silicate are
close to unity, implying that ferric iron incorporation mainly
occurs following the coupled substitution of the two species in
Eq. S1 (see also Fig. S4). However, above 75 GPa, Al/Fe" ratios
significantly exceed 1, implying incorporation of excess alumi-
num through the mechanism described in Eq. S3.

Viscosity in the Lower Mantle. Experimental estimates of the vis-
cosity of mantle minerals can be obtained by deformation ex-
periments at high P and T. Such measurements on lower-mantle
mineral assemblages have only been performed, to date, to
pressures up to 28 GPa (37).

Fig. S5 shows that the trend of K4 in the Brg stability field (Fig.
24) is strongly anticorrelated with the radial viscosity profile de-
termined by Forte and Mitrovica (40). This corroborates the idea
that variations of the iron content in Brg are responsible for rhe-
ological variations observed in the mantle. Indeed, a decrease of
iron content in Brg could make the material stronger, as is the case
for olivine (38) and Fp (39), which might, in turn, affect the viscosity
of the whole mantle. The rheological properties of a PPv-domi-
nated mantle, on the other hand, would most likely be different
from that of a Brg-dominated mantle, given the structural change
and the different intrinsic viscosity of the mineral. However, the
lack of sensitivity of the radial viscosity models at those depths does
not allow estimation of any possible viscosity change associated with
the phase transition in the silicate.
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Fig. S1. Sample recovery by FIB technique. (A) Optical image of the sample viewed through the diamond anvils in situ at high pressure. The dark area
represents the transformed and equilibrated (laser-heated) area. (B) Secondary electron image of the sample after decompression. (C) Gallium ion image of
excavation, obtained after milling around the center of the heated spot, and protected on top by a carbon or a platinum layer. (D) Secondary electrons image
of a transferred sample on a TEM Cu grid. The thin section is thinned to electron transparency (thickness < 100 nm) for EDX and EELS TEM analyses.
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Fig. S2. EDX spectra for (Left) Fp and (Right) silicate. Energy distribution corresponds to X-ray emissions from characteristic chemical elements. Peak height is

correlated to element concentration in the investigated zone. The spectrum for Fp shows no peak for Si and Al, in good agreement with the absence of these
two elements in the mineral structure.
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Fig. S3. EEL spectra of (A) Fp and (B) Brg. The black dots are measurements on the sample, whereas the red and blue curves are the measurements from the
standards, olivine for pure Fe?* and andradite for pure Fe**, respectively. The green curve is the calculated spectrum obtained by a least-squares fit using the two
standards. The thin black line is the residual of the fit. The red and blue vertical bars mark the energies of the Fe>* and Fe?* peaks, respectively, showing a chemical
shift of 1.5 eV. Fp shows no Fe3+ signature and is hence only composed of Fe?* iron (A), whereas Brg (here at 86 GPa) has an Fe>*/SFe value of 0.19 + 0.03 (B).
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Fig. S4. Substitution mechanisms for incorporation of Fe** in the silicate structure. The most energetically favorable mechanism for stabilizing Fe>* in the
silicate structure is through the coupled substitution of Fe>* in the dodecahedral site and AI** substitution in the octahedral site (Eq. S1). This reaction takes
place along the black dashed line and requires equal amounts of Fe** and AI** in the silicate. When ferric iron (orange spheres) or aluminum (blue spheres) are
in excess in the system, their incorporation in the silicate is possible via a similar mechanism (respectively, Eqgs. S2 and S3) where they charge-balance each other
in adjacent sites.
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Fig. S5. Radial viscosity profile of Earth’s lower mantle. Radial viscosity models proposed by Forte and Mitrovica (40) are plotted in gray. The orange curve is
the superimposed iron partitioning (Ke) evolution with pressure (from Fig. 1) for Al-bearing systems relevant to the lower mantle (the dashed part corre-
sponds to 95% confidence interval). The blue-white color gradient is a visual representation of iron concentration in the silicate phase. The figure shows a
striking correlation between increasing viscosity above 75 GPa and iron depletion in the silicate at the same pressure. Above 110 GPa, however, the silicate
structure changes from Brg to PPv, where Fe concentration is even lower. However, the deformation mechanism as well as the very high anisotropy of the PPv

phase preclude any simple assessment of the evolution of viscosity at this depth.
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